
Design of High Trust Embedded Operating System Based on Artificial 
Intelligence 

Xingjian Liua,*, Xiao Chen 
Guangdong Business and Technology University, Zhaoqing, Guangdong, 526060, China 

astarsword2@163.com 

*Corresponding Author 

Keywords: Operating System, Software Architecture, Lightweight, Multitask, Partition, Multilevel 
Security, Unified Architecture 

Abstract: the Embedded Application Scenarios Are Very Extensive, Which Are Divided into Many 
Application Modes, Which Need Different Characteristics and Architectures of the Embedded 
Operating System. This Paper Analyzes the Mainstream Embedded Real-Time Operating System, 
Abstracts the Operating System into Light-Weight Operating System, Real-Time Multi Task 
Operating System, Partition Operating System, Multi-Level Security Operating System and Other 
Different Types According to the Application Mode and Technical Characteristics, and Describes 
the Software Architecture of the Operating System from the Perspective of Technical 
Characteristics, Capability Composition, Structural Framework, Etc., and Proposes a Unified and 
Open a Flexible Operating System Software Architecture Supports a Single Operating System to 
Meet the Requirements of Multiple Application Modes through Configuration. 

1. Introduction 
Embedded Systems Are Ubiquitous in Aerospace, Automotive Electronics, Network Products, 

Intelligent Home Appliances and Other Fields[1]. in These Systems, Embedded Operating Systems 
Are Usually Required to Manage Embedded Hardware and Software Resources. among Them, 
Some Systems Require Strict Real-Time Performance, Such as Control Equipment, Communication 
Equipment, Etc. in the Aerospace Field, and the Operating System Used is Required to Have Good 
Real-Time Performance, Which is Collectively Referred to as Embedded Real-Time Operating 
System (Rtos). 

According to the specific application scenarios, embedded real-time operating system can be 
further divided into four categories: lightweight: for micro nodes, such as sensors, actuators, etc., 
with small-scale, low power consumption and other characteristics; real-time multitasking: for 
general scenarios, such as control, communication, display, etc[2].With good real-time, 
customizable; robust Zoning: for multiple application isolation requirements of integrated scenarios 
It has the characteristics of time / space isolation, health monitoring, etc. multi-level security: for 
scenarios requiring information protection capability, it has the characteristics of trusted kernel, 
security communication, etc. 

There are some differences in the application scenarios, functional requirements and quality 
attributes of the above-mentioned embedded real-time operating systems. Currently, each type of 
operating system meets the specific use conditions and usually uses different software architectures. 
With the increase of operating system types and scale, a series of problems have emerged in 
software reuse, maintenance, certification and other aspects. Academia and industry began to 
explore an operating system software architecture, which can meet the needs of a variety of 
application modes. 

2019 4th International Industrial Informatics and Computer Engineering Conference (IIICEC 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/iiicec.2019.02194



2. Typical Embedded Real-Time Operating System Software Architecture 
2.1 Overview of Embedded Real-Time Operating System Software Architecture 

In the development of software intensive large-scale system or software product line with similar 
demand structure, it is necessary to consider the components that make up the system, the 
relationship or interaction between components, and the topological structure formed by the 
interaction between components[3]. As can be seen from the definition, software architecture 
consists of three parts: software components, relationships and constraints among components, and 
interconnected components to form the overall architecture of the system. Generally, the 
construction process of application system is[4]: problem definition, software requirements, 
software architecture, software analysis and design, software implementation, in which software 
architecture is the bridge between software requirements and software design. Because the 
application scenarios and problem-solving fields of all kinds of embedded real-time operating 
systems are relatively fixed, the architecture of each kind of embedded operating system usually has 
certain universality. 

Table 1 Comparison of Features of Several Operating Systems 
System 
characteristics 

SOS Manti OS TinyOS 

Programming 
mechanism 

event driven Thread driven event driven 

low power 
consumption 

Processor energy 
management 

Processor energy management 
peripheral energy management 

Processor energy management 
peripheral energy management 

task scheduling Priority Priority FIFO 
memory 
management 

static state static state static state 

System execution 
model 

Modular thread assembly 

For the embedded real-time operating system, the functional requirements usually include task 
management, communication management, time management, interrupt / exception and other basic 
capabilities, which may include partition management, power management, security components, 
network components and other functions depending on the specific application[5]. Non functional 
requirements have great differences for all kinds of operating systems, such as the operating 
systems used in safety critical areas focus on certainty, reliability, hardware compatibility, 
environmental compatibility, fault tolerance, health monitoring, certifiability, maintainability, 
reusability, etc. The above functional requirements and non functional requirements need to be 
considered in the software architecture design stage. 

2.2 Architecture of Lightweight Operating System for Micro Nodes 
The typical application scenario of this kind of operating system is wireless sensor. The 

characteristics of this kind of nodes are: sensor nodes have limited power energy, communication 
capacity and computing storage capacity; network has the characteristics of large-scale, self-
organization, dynamic, reliability, etc. application relevance is strong. There are many embedded 
operating systems for wireless sensor networks, such as TinyOS, mantis OS, SOS, Contiki, vxmicro, 
etc. 

The common software architecture design patterns of this kind of operating system include: 
Based on event triggering model, multi-threaded cycle scheduling model, and the difference 
between the above three software architecture design patterns is whether to introduce multi-
threaded or preemptive. The operating system with event triggering and multithreading cycle 
scheduling is smaller in scale and simple in mechanism, which is commonly used in micro nodes 
with single functional requirements. For the software architecture supporting multithreading, multi 
priority and event management, the event driving and task execution are separated, and the 
preemptive multithreading scheduling mode is adopted. Such operating system is usually cut and 

95



performed by the general kernel Therefore, it has better scalability, better support for message 
management, storage management, module management, power management and other commonly 
used modules, with a wider range of applications. 

2.3 Architecture of Real-Time Multitask Operating System for General Domain 
Real time multitask embedded operating system is widely used in aerospace, industrial control, 

rail transit and other fields[5]. It usually supports priority based multitask, multi class 
communication, rich components, rich devices, rich interfaces, with good real-time, customizable 
and other features, such as common VxWorks, UC / OS, integrity, ose, QNX, RTEMS, etc. 

With the improvement of application requirements, the function of the operating system is 
enhanced, the number of modules is increased, and the scale is enlarged. When carrying out the 
architecture design, more attention should be paid to the characteristics of the operating system, 
such as openness, scalability and security. Generally, the design strategies such as hierarchical, 
modular, object-oriented, standardized interface, polymorphism, space protection and other security 
strategies are adopted. Figure 1 shows the software architecture of a common real-time multitask 
operating system. 

The early real-time multitask operating system does not support polymorphism, and the 
operating system and application run in the system state. With the improvement of hardware storage 
management unit (MMU) capability and the demand of isolation protection, the operating system 
gradually supports multi privilege state and task isolation. 

2.4 Robust Partitioned Operating System Architecture for Application Integration 
Integrated modular avionics system (IMA) can effectively reduce the volume, weight and cost of 

avionics system by integrating the application of multiple electronic devices in a combined 
environment[6]. At the same time, resource sharing also brings mutual interference between 
multiple applications. This kind of interference can be solved by the partition mechanism provided 
by the operating system. Through the time and space isolation of the application, the failure of one 
partition will not affect other partitions, which effectively supports system verification, validation 
and authentication. The avionics Technical Committee (AEEC) has issued a series of ARINC653 
(aviation application software programming interface) standards, which specifies the programming 
interface provided by the operating system to the application: 

Part 0 is the standard overview; 
Part 1 is a required service; 
Part 2 is extension service; 
Part 3a is the required service compliance test specification; 
Part 3b is the extended service compliance test specification; 
Part 4 is a subset service; 
Part 5 is the core software recommendation capability. 
At present, the airborne operating system applied to ima conforms to ARINC653 standard and 

the software architecture specified in the standard. The operating system that meets the 
requirements of ARINC653 needs to provide the two-level scheduling capabilities of partition level 
and process level[7]. This kind of operating system can be divided into two layers: core layer and 
partition level. The core layer mainly realizes the functions of partition management, partition 
scheduling, health monitoring and partition communication. The partition level implements the 
application execution interface (APEX) that meets the requirements of ARINC653, including 
process management and process Communication, time management and other functions. The 
virtualization technologies such as system call and virtual interrupt are usually used to realize the 
information interaction between the two layers. 

2.5 Multi Level Security Operating System Architecture for Information Security 
In aviation, military and other security control systems, there are multi level security / safety 

(MLS) applications. Multilevel security system refers to a system that processes information of 
different sensitive levels (such as different security levels). Multilevel security system must be 

96



authenticated to ensure that it can process and output data of multiple security levels at the same 
time. Multiple independent levels of security / safety (mils) not only refers to the verifiable high 
assurance security architecture that implements different security level applications on a single 
kernel, but also refers to the security system design method that provides a reusable formal 
framework for high assurance system specification and verification. Mils combines the system 
operation security solution meeting FAA do-178b / C criteria and the information security solution 
meeting NAS / niap common criteria criteria. The generation of mils architecture is to simplify the 
design, analysis and verification process of high assurance system. It is a high assurance security 
architecture based on the “separation” idea proposed by rushby, and builds hierarchical security 
services through separation. The software architecture of mils is given. The separation kernel layer 
brings the most important security functions into the kernel to form trusted code, provides reliable 
partition and controllable information flow for middleware and applications, and middleware 
provides services such as resource allocation, partition communication, data subscription and 
publication. The application uses the separation kernel and security middleware to manage, control 
and execute specific security policies[8]. The following policies are required: non bypassable 
security function, small and verifiable security function evaluation, always - in - voked security 
function, tamperproof security function and data. 

3. Definition of Unified Software Architecture of Embedded Real-Time Operating System 
Because of the variety of application scenarios and use requirements of the embedded real-time 

operating system, and the different requirements for the technical characteristics of the operating 
system, there are many kinds of embedded operating system, and the architecture is not uniform. 
This situation brings a series of problems to operating system development: too many kinds of 
product lines, difficulty in software reuse, difficulty in software maintenance, high cost of 
development and certification. Therefore, the industry hopes to learn from the mode of general 
operating system such as windows or Linux, find a general embedded real-time operating system 
software architecture, and realize different operating system capability configurations through 
tailoring, configuration or combination, so as to meet the use needs of different applications. 

In addition, with the rapid development of embedded system, embedded users pay more attention 
to the characteristics of embedded operating system, such as open architecture, scale expansion, 
capability customization, unified interface and so on. They tend to adopt unified software 
framework and shelf products (COTS) as much as possible to quickly build their own software 
products. In view of the common needs of operating system developers and application developers, 
a kind of operating system architecture that can meet a variety of embedded application scenarios 
has been explored at home and abroad. 

With the improvement of computer technology and software technology, it is possible to meet 
the above requirements of a unified architecture embedded real-time operating system. Through the 
combination and optimization of various design strategies, a unified, open and elastic operating 
system software architecture can be defined. In the aspect of operating system design, the 
hierarchical implementation of hardware abstraction, kernel, component and application division, 
modular implementation of the definition of each module, module connection and constraint, micro 
kernel implementation of kernel high abstraction and minimum definition, extensible 
implementation of module dynamic addition and withdrawal, object-oriented implementation of 
object abstraction, data and service encapsulation, etc[9]. the implementation of multi scheduling 
policy framework is not Same as the support of scheduling method. In terms of development 
environment, it supports component-based management strategy, management of different types 
and versions of modules, and can be configured to generate operating systems with different 
capability configurations. 

In the above architecture, the microkernel and the multi-mode scheduling extension module can 
not be tailored, and other modules can be combined or tailored according to the use mode 
requirements. The multi-mode scheduling extension module supports the policy configuration and 
execution of schedule scheduling, priority scheduling, cycle scheduling, etc.; the kernel auxiliary 

97



function extension module realizes the common auxiliary functions such as information browsing, 
equipment management, debugging support, etc.; the real-time process realizes the security 
isolation of the application tasks in the general field; the ARINC653 support module realizes the 
robust partition in the integrated scene; the security function realization The multi-level security 
capability meets the requirements of information security protection; the virtualization module 
provides different degrees of virtualization support capability for the upper application; the 
functional component is the file system, graphic image and other components configured according 
to different application requirements; the operation environment provides support services to the 
application according to different capability configurations. According to the above software 
architecture, the following capability configurations are formed for different application scenarios: 

For micro nodes: micro kernel + multi-mode scheduling extension module (priority or event 
triggering); 

For real-time multitasking: microkernel + multimode scheduling extension module (priority) + 
real-time process; 

For integration: microkernel + multi-mode scheduling extension module (schedule scheduling) + 
ARINC653 support + operation environment; 

For information security: microkernel + multi-mode scheduling extension module (time schedule) 
+ security function + operation environment; 

For hybrid scenarios (combined requirements of partition, information security and customer 
OS): microkernel + multi-mode scheduling extension module + ARINC653 support + security 
function + virtualization + operating environment. 

4. Conclusion 
In the future, the embedded application scenarios will be more diverse, which continuously puts 

forward new requirements for the embedded operating system. New features and new architecture 
of the embedded operating system will appear, such as the current operating system for the Internet 
of things, artificial intelligence, cloud computing and other new technologies is in the research 
hotspot. At the same time, reducing cost, improving efficiency and ensuring quality are the eternal 
pursuit. The academia and industry will also carry out the research and practice of embedded 
operating system with unified architecture for a long time, and successively launch customized 
operating system. At present, some embedded operating systems have carried out the practice of 
unified software architecture, the unity of multi task and lightweight, the unity of multi-level 
security and ARINC653, and will be unified in more types of operating systems in the future. 

References 
[1] Yue, Z., Yoshigoe, K., Jiang, B., et al. (2017). A Distributed Graph-Parallel Computing System 
with Lightweight Communication Overhead, vol. 2, no. 3, pp. 204-218. 
[2] Zebin, Wu., Linlin, Shi., Jun, Li. (2017). GPU Parallel Implementation of Spatially Adaptive 
Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations 
& Remote Sensing, vol. 11, no. 4, pp. 1-13. 
[3] A, Aimar., A, Aguado, Corman., P, Andrade. (2017). Unified Monitoring Architecture for IT 
and Grid Services. Journal of Physics Conference, vol. 898, no. 9, pp. 092033. 
[4] Wei Wei, Dejun Jiang, Jin Xiong,. HAP: Hybrid-Memory-Aware Partition in Shared Last-Level 
Cache[J]. Acm Transactions on Architecture & Code Optimization, 2017, 14(3):1-25. 
[5] Saveetha, V., Sophia, S. (2017). Optimization of K-Means Clustering on Graphics Processing 
Unit Using Compute Unified Device Architecture. 
[6] Kyrill, Kunakhovich. (2018). What Remains: Everyday Encounters with the Socialist Past in 
Germany by Jonathan Bach (review). German Studies Review, no. 41. 

98



[7] V, S, Sukhopluyeva., D, Y, Kuznetsov. (2017). Software system architecture for corporate user 
support[J]. Journal of Physics Conference, vol. 803, no. 1, pp. 012160. 
[8] Wei, Yancong., Yuan, Qiangqiang., Shen, Huanfeng. (2017). Boosting the accuracy of multi-
spectral image pan-sharpening by learning a deep residual network. IEEE Geoscience & Remote 
Sensing Letters, vol. 14, no. 10, pp. 1795-1799. 
[9] Emmanuel, U., Ogbodo, David, Dorrell., Adnan, M. (2017). Abu-Mahfouz. Cognitive Radio 
based Sensor Network in Smart Grid: Architectures, Applications and Communication 
Technologies. IEEE Access, vol. 5, no. 9, pp. 19084-19098. 
 

99


	Abstract: the Embedded Application Scenarios Are Very Extensive, Which Are Divided into Many Application Modes, Which Need Different Characteristics and Architectures of the Embedded Operating System. This Paper Analyzes the Mainstream Embedded Real-T...
	1. Introduction
	2. Typical Embedded Real-Time Operating System Software Architecture
	2.1 Overview of Embedded Real-Time Operating System Software Architecture
	2.2 Architecture of Lightweight Operating System for Micro Nodes
	2.3 Architecture of Real-Time Multitask Operating System for General Domain
	2.4 Robust Partitioned Operating System Architecture for Application Integration
	2.5 Multi Level Security Operating System Architecture for Information Security

	3. Definition of Unified Software Architecture of Embedded Real-Time Operating System
	4. Conclusion



